专业的信息化与通信融合产品选型平台及垂直门户
注册 登陆 设为首页 加入收藏
首页 企业新闻 招标信息 行业应用 厂商专区 活动 商城 中标信息

资讯
中心

新闻中心 人物观点
厂商专区 市场分析
行业
应用
政府机构 能源产业 金融机构
教育科研 医疗卫生 交通运输
应用
分类
统一协作 呼叫客服 IP语音 视频会议 智能管理 数据库
数字监控 信息安全 IP储存 移动应用 云计算 物联网

TOP

视频监控结构化处理是大数据应用难点
2015-02-25 17:56:43 来源:中安网 作者:【
关键词:视频监控 大数据
 
除了应用模式,技术也是目前横亘在视频大数据发展道路上的另一座大山。有很多方面,涉及采集、存储、管理等多方面的领域,但是在作者看来,最大的技术障碍还是在于视频的结构化。

  除了应用模式,技术也是目前横亘在视频大数据发展道路上的另一座大山。有很多方面,涉及采集、存储、管理等多方面的领域,但是在作者看来,最大的技术障碍还是在于视频的结构化。商业应用上的数据多为结构化数据,每个数据都由一系列明确的描述属性组成,大数据处理系统则可以根据使用者的要求将不同的属性进行归类,从而发现和掌握事物发展的客观规律。而视频则不然,除了时间和空间的属性外,并没有其他的标签。除了按照时间和地点查找相应的视频外,大多的视频只能靠人慢慢甄别,这离大数据应用还相去甚远。

  要做到大数据应用,就必须为每个视频贴上更多的属性标签,也就是业内所说的结构化过程。作者认为这是未来视频应用技术的制高点,其核心是模式识别算法,要做到自动把视频中的特征识别出来贴上标签后入库。这样在日后需要的时候,才能实现海量视频的快速查询和碰撞研判,甚至能像商业大数据那样做到归类统计。

  结构化的意义不难理解,只是真正实现起来很难,作者总结了有几个原因:

  1.识别什么特征?一副图像或者一段视频可以有无数角度的标签属性去描述,什么才是我们需要的属性?这与我们需要得到的目的密切相关,这就需要公安图侦的人才来归纳终结。

  2.识别算法开发难,由于是平面图像,因此特征的识别主要原理就是看图像区域中的轮廓、颜色、纹理与特征库进行比较。但是在同一个物体在不同监控角度的摄像头中显示出的轮廓都不相同,因此无法做到识别。

  3.大规模数据处理难,即使做到了识别算法,但是如果要通过数据处理服务器的形式对大规模的视频进行结构化处理,这个建造成本巨大,其能源的耗费在中国这个夏季需要限电的情况里也不切实际。

  如此看来,视频结构化的路似乎走不通,但是,目前在业内也出现了许多“曲线救国”的方法。比如:

  1.大力发展电警卡口建设:目前电警卡口在图侦上的应用需求和频率早就超越了交警,因为案件基本都要与车辆发生联系,这能找出很多的线索。而卡口电警对于车辆的抓拍角度是相对固定的,能够开发出相应的车辆特征识别技术,电警卡口属于业务需求和技术实现的一个很好的匹配点。

  2.结构化识别前移:在摄像机采集到图像的同时就要做好结构化的工作,例如卡口摄像机,就应该把智能识别的算法集成进去。目前不少厂商都推出了相应的智能卡口摄像机,建议政府应该大力推广,在老卡口摄像机更新换代的时候使用这类智能卡口摄像机进行替代,为未来大规模进行视频结构化做好准备。

  3.双目等特种摄像机的开发,突破平面图像特征的局限,得到更精准的三维系信息,如人体数量,高度,物体长度等。类似的产品适合应用在重点区域,符合国内目前严峻的反恐形势。

  4.物联网等更多感知技术的应用,本文虽然主题是视频大数据,但在业务的发展中,也积极倡议除了视频外,融入更多的物联网感知技术,如RFID技术等,作为视频结构化信息的一个有效补充。

  总而言之,对于视频大数据的产业发展,一句话来总结:前途一片光明,同志仍需努力。

      

责任编辑:admin
免责声明:以上内容转载互联网平台或企业单位自行提供,对内容的真实性、准确性和合法性不负责,Voipchina网对此不承担任何法律责任。

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部

上一篇安防视频监控ONVIF/PSIA/HDCCTV三..
下一篇卫星车载监控应用:实现七大目标..

热门文章

图片主题

最新文章

相关文章

广告位

Copyright@2003-2009 网络通信中国(原VoIP中国) 版权所有
联系方式:503927495@qq.com
  京ICP备05067673号-1 京公网安1101111101259